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We study the dynamics of ‘‘finger’’ formation in Laplacian growth without
surface tension in a channel geometry (the Saffman–Taylor problem). We
present a pedagogical derivation of the dynamics of the conformal map from a
strip in the complex plane to the physical channel. In doing so we pay attention
to the boundary conditions (no flux rather than periodic) and derive a field
equation of motion for the conformal map. We first consider an explicit analytic
class of conformal maps that form a basis for solutions in infinitely long chan-
nels, characterized by meromorphic derivatives. The great bulk of these solu-
tions can lose conformality due to finite time singularities. By considerations of
the nature of the analyticity of these solutions, we show that those solutions
which are free of such singularities inevitably result in a single asymptotic
‘‘finger’’ whose width is determined by initial conditions. This is in contradiction
with the experimental results that indicate selection of a finger of width 1/2. In
the last part of this paper we show that such a solution might be determined by
the boundary conditions of a finite body of fluid, e.g. finiteness can lead to
pattern selection.

KEY WORDS: Saffman–Taylor problem; Laplacian growth; conformal maps;
Hele–Shaw cells; viscous fingering.

1. INTRODUCTION

We revisit the Saffman–Taylor problem of a less viscous fluid pushing a
much more viscous fluid in a channel, without any surface tension. (1) As a
modest variant upon the usual treatment, (2, 3) we set up the formulation,
from the beginning, to allow for time variable flux through the channel. We



do this in order to be in a position to consider finite bodies of fluid, which
we lightly discuss in Section 6. There we observe that finiteness issues a
preliminary signal that it may be the source of the experimentally observed
half-of-width finger. (4, 5) This is offered as a potentially alternative mecha-
nism to the well studied role of surface tension in causing selection. (6–8)

A major goal of this paper is indeed selection, as this effort sprang
from the result of Section 4, which, in the context of ‘‘pole dynamics’’
establishes the ‘‘zeroth’’ problem of pattern selection, namely that there is
just one well-formed finger that propagates down the channel. We show
that this is accomplished by a nonlinear mechanism of the dynamics. In
this same section we observe, contrary to some published results [9], that
even for the pole-dynamics submanifold, there can be no width selection in
the infinite channel problem. Section 5 considers the role of finite-time
singularities in this zeroth selection context.

Perhaps novel to physicists who have been involved with this problem,
but already pointed out in ref. 10, we explain in Section 2C that the correct
symmetry for channel flow is Schwartz reflection symmetry (f(z̄)=
f(z)) and not periodicity cross-channel. We show how easily, after analytic
continuation of the equations of motion, this allows for the construction of
hosts of solutions. Specifically we notice in Section 2F an inkling of half-
width selection connected with reflection symmetry. We amplify on this in
Section 6, noting that under pressure fixing on a second boundary (and
hence for a finite body of fluid), reflection symmetry is not just cross-
channel symmetry, as is periodicity, but entails as well a relation between
far downstream details (the efflux) and high upstream ones (singularities
determinative of pattern). We end this Section with the result that in the
well-formulated problem of a finite body of fluid within an arbitrarily long
channel, and hence with two free boundaries, within pole-dynamics there
can only be half-width solutions, this a sharp prognosis that finiteness can
be determinative of half-width selection in the absence of any surface
tension. (This material is an introduction to an exhaustive treatment of
finiteness in a sequel paper. (11))

2. ANALYTIC SOLUTIONS OF LAPLACIAN GROWTH IN CHANNEL

GEOMETRY

A. The Physical Problem and the Mathematical Formulation

We are interested in the so-called Saffman–Taylor problem of deter-
mining the motion of an interface c(t) between two fluids of different vis-
cosities in a Hele–Shaw cell. We can think of air displacing oil as a stan-
dard example. (12) The cell is a channel made of two long rectangular plates
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displaced by a small distance b. We chose x to denote the long lateral
coordinate, whereas y denotes the transversal direction of the cell,
0 [ y [ p in suitable units, (see Fig. 1a). When the gap b is considerably
smaller than the lateral width of the cell, and non-slip boundary conditions
are taken at the upper and lower plates, then the velocity field v in the
driven fluid satisfies Darcy’s law

v=
−b2

12m
Np (1)

where p is the pressure field and m the viscosity. Because of the assumed
very small viscosity of the driving fluid, its pressure is almost constant
(taken to be zero), while in the driven fluid, by virtue of incompressibility,
N · v=0, the pressure is harmonic:

Dp=0 (2)

The boundary conditions on the interface are determined by first requiring
the nonpenetrability of the two fluids in contact. This means an equality of

Fig. 1. (a) The physical channel in z space with the interface satisfying no-flux on the lateral
walls is mapped onto the mathematical channel in z=h(z)=−p(z)+is(z). (b) Using the
reflection symmetry the problem is ‘‘doubled,’’ the interface in the doubled channel satisfies
periodic boundary conditions, and the expected physical solutions is two fingers.
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the normal velocity of the interface vi ·n and of the normal velocity of the
fluid at the interface. Secondly, the pressure of the fluid at the interface is
given by the relation

pair−p=so (3)

where s and o are interfacial surface tension and curvature respectively. On
the lateral walls (y=0, p) the normal velocity of the fluid vanishes, and as
xQ., far ahead of the interface, the flow is taken as uniform, parallel to
the x axis, and of magnitude V. Here we take s=0. The boundary condi-
tion (3) now simplifies to taking constant pressure on the interface:

p=0 at the interface c(t); s=0 (4)

In consequence of Eq. (1) we also need to require that the normal deriva-
tive of the pressure vanishes at the lateral walls. This means that the inter-
face must be normal to the two lateral walls. As the flow is approximately
two-dimensional and obeys Laplace’s equation, in the usual fashion one
produces an analytic function h̃Œ(z),

h̃Œ(z)=−“xp+i“yp=vx−ivy — v̄ (5)

where z=x+iy. (With Dp=0, h̃Œ(z) satisfies the Cauchy–Riemann condi-
tions.) The integral of h̃Œ(z) is

h̃(z)=−p(z)+is(z) (6)

with s(z) the harmonic function conjugate to −p(z). The function s(z) is
typically multivalued. Consider now an arbitrary curve c, and denote by
Fc(t) the time dependent flux that crosses c. It is convenient to consider
Vc(t), the mean channel velocity, by dividing F by the constant channel
width p. With n̂ denoting the right-handed normal

Vc(t)=
1
p
F
c

vndl (7)

where dl is an arc-length differential. Denoting û the unit vector orthogo-
nal to the plane we can write

vn dl=v · (dl×û)=v×dl · û

=vx dy−vy dx=Im v̄ dz (8)
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We observe that

1
pi
v̄ dz=−

i
p
v ·dl+

1
p
vn dl=

i
p
dp+

1
p
vn dl (9)

and

Vc(t)=
1
pi

F
c

v̄ dz−
i
p
dcp (10)

where dcp represents the pressure difference between the end points of c. In
particular, the flux crossing a curve of constant pressure p=p0 satisfies

Vp0(t)=
1
pi

F
p0
v̄ dz (11)

We will later need to consider sinks at finite distances. In preparation for
this, consider two constant pressure curves, c1 and c2, (of pressure p1 and
p2 respectively) each connecting the two boundaries, and observe that

Vp2−Vp1=
1
pi

G v̄ dz (12)

where the closed curve is the boundary of the domain W which is delineated
by c1, c2 and the two walls. If v̄ is analytic in W, Vp1=Vp2. On the other
hand if there are sinks in W, we can write

v̄=v̄ana+C
ai/2
z−zi

Vp1−Vp2=C ai

(13)

and each such pole sinks ai worth of the flux crossing c1 into W. The flux
across a constant pressure line, given by Eq. (11), then determines by
Eq. (6) that Vp0=(dp0s)/p, or

dp0 1
s

Vp0(t)2
=p (14)

where dp0s denotes the difference of s(z) between the boundary walls.
Since we are assuming a flux of fluid incident from the left, it is

evident that there must be a sink of equivalent strength either at infinity or
at some finite location. In particular the pressure approaches −. at the
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sink. Provided there is just one sink, then for each value of p there will
generally be just one corresponding physical curve. Then, at each instant of
time, the flux crossing every curve of constant pressure is identical. Defin-
ing a complex variable

z —
−p+is
V(t)

(15)

where V(t) is the common value of Vp0 for all constant pressure lines, we see
that h̃/V(t) maps the physical channel into an identical region of z space.
That is, the map

z=h(z, t) — h̃(z, t)/V(t) (16)

can conformally map the strip to itself. In particular

hŒ=
v̄
V(t)

(17)

replaces Eq. (5). Laplace’s equation for the pressure is written as
D Re z=0, and is automatically still obeyed since V is purely a function of
time. However, we must insist now that the interface is p=0 and not any
other constant, not to have Re z time dependent on the interface. (The
physical pressure can be any p0(t). Since only differences of pressure matter,
we simply subtract p0(t) to normalize to p=0 at the interface.) The rela-
tions between the physical channel, the mathematical strip and h(z) are
summarized graphically in Fig. (1)a.

B. The Analytic Map f and Its Equation of Motion

Having defined the map h we notice that it is inconvenient that the
boundary of its domain c(t) is at the moment unknown and potentially
complicated. However its image in z space is elementary: Re z=0. Accord-
ingly it is natural to invert the discussion and consider a map f from z to
z. (13–15) Assuming h is conformal (hŒ ] 0) on the physical domain), h−1 exists,
which is precisely the desired analytic (in the physical domain) f (f — h−1).
From this point onwards when we say ‘‘analyticity,’’ we mean the analyti-
city of f (equivalent to the conformality of h). As well, when we say ‘‘con-
formality’’ we mean the conformality of f (equivalent to the analyticity of
h). Should f’s analyticity fail, then the setup is inapplicable; should f’s
conformality fail, then Dp=0 no longer holds, and the dynamics has
created singularities. We will show in Section 3 that f remains analytic for
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all times. The serious issue of f’s conformality is beyond our full under-
standing, but we shall illuminate the issue. f(z, t) describes a flow with
boundary conditions p=0 provided that the interface c(t) develops to the
interface c(tŒ) for any later time tŒ under transport by v=h̄Œ. This require-
ment leads to the equations of motion. (13–16) Consider any point z0 ¥ W. z0
serves as a Lagrangian label for the fluid point at f(z0, 0). However,
f(z0, t) is not this same fluid point at time t. Define

z=Z(z0, t) (18)

as the moving point labeled by z0, with Z(z0, 0)=f(z0, 0). There exists at
each time t a map z0 Q z(z0, t) such that Z(z0, t)=f(z(z0, t), t). By definition

Zt(z0, t)=fŒzt+ft=vx+ivy

=V(t) hŒ(f(z, t), t)=
V(t)
fŒ(z, t)

(19)

Accordingly z satisfies the differential equation

|fŒ|2 zt+ftf̄Œ — V(t) (20)

We observe now that the boundary c(t) flows into itself. Thus for each z0
on the boundary (Re z=0 at t=0), z(z0, t) is also on the boundary, and so
Re z(z0, t) — 0 for Re z0=0. But then Re zt=0 and taking the real part of
(20) we obtain the usual result (13, 14, 16)

Re(ftf̄Œ)=V(t) on Re z=0 (21)

In previous work V(t) is taken identically equal to 1. Equation (21)
generalizes the standard result to the case of variable flux which is neces-
sary with finite boundary conditions.

C. Exponentiation and Reflection

Geometrically, the strip W, Re z \ 0, 0 < Im z< p, is less felicitous
then a circular domain, with ‘‘infinity’’ (Re zQ.) the point at infinity. It is
natural to write

u — ez, w — ez

w — g(u), f(z)=ln g(ez)
(22)

so that eW is the entire upper half-plane minus the unit disc (|u| \ 1,
Im u > 0), see the shaded region in Fig. (2). Under f’s exponential
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Fig. 2. The exponentiated domain and its mapping g(u) to the exponentiated physical strip.

conjugate, g, eW maps to Im w> 0: g’s boundary value on |Re u| \ 1,
Im uQ0+, is real, and just the exponential of pressure along the walls.
With no shocks, p(x, 0) is continuous. So g takes real rays continuously to
real rays. As such it immediately defines its analytic continuation
g(u) — g(ū) for Im u < 0, and this reflection symmetric continuation is
analytic in the entire u-plane for |u| > 1. With ln and exp both also reflec-
tion-symmetric, so too must be f:

f(z)=f(z̄) (23)

as well as fŒ and ft. We shall have numerous occasions to utilize this
symmetry. Note that the continued f has a domain equivalent to a doubl-
ing of the physical problem such that the interface and fluid now enjoy
analytically periodic boundary conditions from −p to p. Of course, the
physical problem remains in the half strip, but this extra symmetry dictates
profound restrictions on f’s analyticity structure. (10)

D. Reflection Symmetric Equations of Motion

Let us now utilize reflection symmetry to transform Eq. (21) into a
field equation valid throughout the body of the fluid. Using (23) we can
rewrite Eq. (21) in the form

2V(t)=ft(z) fŒ(z̄)+ft(z̄) fŒ(z) (24)

and noticing that Re z=0 implies that z̄=−z we have

ft(z) fŒ(−z)+ft(−z) fŒ(z)=2V(t) (25)

It is important to note that this equation holds not just for Re z=0, but for
all z for which f is analytic. The reason is as follows: solve for f(z, t) from
Eq. (21). Compare to the solution of Eq. (25), which we denote temporarily
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as f̃(z, t). The two functions f(z, t) and f̃(z, t) are the same on the bound-
ary Re z=0, and since they are analytic they are the same functions. We
can thus use (25) instead of (21) for any z. Equation (25) relates f(z) to
f(−z) which will prove to be of significant value for the forthcoming
analysis. In particular, when f has the elementary analytic behavior
f(z) ’ z as Re zQ., it follows from (25) that f is analytic as Re zQ−..
(This is the usual case for the consideration of a sink at ..)

E. A Class of Solutions

There exist, sprinkled throughout the literature, (15, 16, 2) considerations
of a class of solutions to Eq. (25) with a sink at ., with moving singulari-
ties, most naturally written in u-space as

g(u)=eb(t)uD
k 1
1−

ak(t)
u 2

ak

(26)

It is easy to see that for such g the corresponding ft and fŒ simply have
poles in ez. From the form of (25) we then see that the class of functions g
exhausts the solutions of (25) within the class of rational functions of ez.
We will verify (as has been commented upon in some of the literature) (16)

that the equations of motion are satisfied with ak constant in time. Con-
trary to some of the literature we consider the ak arbitrary complex
numbers rather than just real integers. (15) Further, paying attention to the
analyticity structure imposed by reflection symmetry, it follows that b(t) is
real, |ak(t)| < 1, and for each complex {ak(t), ak} pair, there must also be a
corresponding pair with both conjugated. Those g’s with just one a (which
is real and constant in time) comprise the Saffman–Taylor solutions.
Numerical explorations in the literature appear to indicate (16) that richer g’s
replicate a large class of interface motions. (From a numerical point of view
a rich enough collection of a’s surely serves as a basis.) Some of our com-
ments will follow directly from the equations of motion, whereas others
pertain only to arbitrary solutions of the form (26). By the conjugacy (22)
we now have for f

f(z, t)=b(t)+z+C
N

k=1
ak ln(1−ezk(t)−z) (27)

where ak(t) — exp(zk(t)), Re zk(t) < 0. We shall suspend until Section 3 the
equations of motion implied by (25) for the parameters of f, and further
comments on the origin of class (27) in subsection G to follow.
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F. Elementary Flow Solutions

Our equations of motion allow for the ready production of a variety of
solutions. Consider first the class of solutions with a fixed shape interface
uniformly translating in time, so that we can take V(t) — 1. The interface is

zint(s, t)=f(is, t)=b(t)+F(is) (28)

Using (25),

f=b(t)+F(z); ft=ḃ(t), fŒ=FŒ(z)

2
ḃ
=FŒ(z)+FŒ(−z) (29)

But then, 1/ḃ — l, a constant, and b=t/l. From (29) we deduce

F(z)−F(−z)=2lz (30)

or f(z, t)−f(−z, t)=2lz. Setting z=is, we find

f(is, t)−f(−is, t)=2ils (31)

By reflection symmetry f(−is)=f̄(is), i.e. Im f(is, t)=ls, or

y(s, t)=ls (32)

This solution represents an interface that occupies a constant channel frac-
tion, l, sensible for l ¥ (0, 1]. This also implies that the interface is a graph
of (x(y), y), and so conformal for those l’s since |fŒ| > |yŒ|=l. Writing
F=lz+E(z), Eq. (30) is

E(−z)=E(z) (33)

The general solution is

f=
t
l
+lz+E(z) (34)

with E an even function of z compatible with full channel width:

l+
1
pi
(E(−p+ip)−E(−p))=1 (35)

for those curves of constant pressure within the physical fluid (p < 0)
which span the free channel. Since E is even, if E has a singularity at zk
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with Re zk < 0, then it must also possess an identical singularity at
Re zk > 0, and so f is no longer analytic in the entire physical fluid,
implying the existence of stagnation points or infinite velocities within the
fluid itself. Within the class of solutions g,

f=
t
l
+lz+C ak ln(1−ezk−z)(1−ezk+z)

Re zk \ 0 (by definition) (36)

It is expedient, to facilitate the generation of elementary solutions, to
consider those solutions which are ‘‘periodic’’ over the physical channel:

f(z+ip)=f(z)+ip (37)

Defining now double-width variables

z̃=2z−ip; z̃=2z−ip (38)

so that the physical channel 0 [ Im z [ p is mapped to −p [ Im z̃ [ p, we
consider

z̃=2f 1
z̃+ip
2 2−ip — f̃(z̃)

f(z)=
1
2
f̃(2z−ip)+

ip
2

(39)

f̃ now has 2pi periodicity, and is again reflection symmetric since f is:

f̄̃(z̃¯)=2f̄ 1
z̃
¯+ip
2 2+ip=2f 1

z̃−ip
2 2+ip

=2f 1
z̃+ip
2
−ip2+ip=2f 1

z̃+ip
2 2−ip=f̃(z̃) (40)

Conversely, any 2pi periodic reflection symmetric f̃ determines a pi perio-
dic reflection-symmetric f(z). (Such an f is too symmetric in that the
upper and lower channel walls have perfectly synchronized flows along
them, a condition not enforced by the physical data.) The virtue of this
device is that an f̃ with just one symmetric pair of singularities produces an
f with two symmetric pairs of singularities, and so embraces more com-
plicated flows that does just one symmetric pair.
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So far as time-dependence is concerned it is natural to take

f(z, t)=
1
2
f̃(2z−ip, 2t)+i

p

2
(t̃ — 2t) (41)

so that

fŒ(z, t)=f̃(z̃, t̃), ft(z, t)=f̃t̃(z̃, t̃) (42)

Also, by 2pi periodicity of f̃, fŒ(−z, t)=f̃Œ(−z̃, t̃) and similarly for ft.
With Ṽ(t̃) — V(t), the equations of motion are covariant. So, all we need do
is forget the tildes, solve the simpler problem, and then conjugate it back to
the physical space. In the sequel we neglect the last step as an ellipsis the
reader readily can fill in. There are reasons to be wary of the extra sym-
metry in the solutions, and we shall point out this fact when it arises.

The simplest possibility of (36) is one zk=pi:

f=
t
l
+lz+a ln(1+e−z)(1+ez)

=
t
l
+(l+a) z+2a ln(1+e−z) (43)

For full channel width for Re z> 0, we require l+a=1, or

f=
t
l
+z+2(1−l) ln(1+e−z) (fŒ(−.)=2l−1) (44)

These are precisely the Saffman–Taylor solutions for a finger of width l,
and the only such solutions of our class analytic for all Re z> 0.

The next simplest solution is

f=
t
l
+z+2(1−l) ln(1+e−z)

−a ln(1+e−zg−z)(1+e−zg+z) (zg > 0) (45)

Notice that for −zg < Re z< zg, the channel is fully occupied with flux,
but for Re z> zg the entire asymptotic flux occupies only the fraction 1−a
of the whole channel. The most interesting such case is a=1, when all flux
is sunk in the point f(+.)=zsink:

zsink(t)=
t
l
, fŒ(+.)=0 (46)
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The constant pressure contours for 0 > p >−zg span the channel, but
those for p <−zg are closed curves surrounding the sink at zsink. The
separatrix between them at z=zg+is has the form

zg=
t
l
+zg+is+2(1−l) ln(1+e−zg−is)

−ln(1+e−2zg−is)−ln(1+e is) (47)

For zg ± 1

zg %
t
l
+zg+is−ln(1+e is) (48)

and is an upstream-pointing Saffman–Taylor finger of width 2(1−l)=1, or
l=1/2, by comparison to (44), see Fig. 3. This is amusing, and suggests
that with an enforced symmetry between z and -z, then (46) would be
fŒ(−.)=0, so that if (44) were asymptotically valid, then a 1/2 width
finger for the interface itself could be implied. We will return to these
matters later.

Let us now consider some elementary solutions with variable flux V(t).
The simplest solution arises when the pressure profiles are a function of x
but not of y, p=p(x, t). This implies, by analyticity, that

f=b(t)+z (49)

Fig. 3. Schematic stream and pressures lines in a channel with an advancing finger (shaded
region) and a sink (denoted by ×). the stream and pressure lines are indicated by dashed and
continuous curves respectively. The pressure line with p=p separates pressure lines that
connect the walls (like pa) and those which form closed curves around the sink (like pb). The
stream lines s=p, s̄=−p graze the walls y=±p respectively from x=−. to x=. where
they curve around and return along y=0+ and y=0− respectively from x=. to the sink,
forming a branch cut.
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where the coefficient 1 of z specifies a channel fully occupied with flux.
We now pose finite boundary conditions, namely that p=pa (atmospheric
pressure) on x=L. We denote pg=|pa |, and write 2L=f(z)+f(z̄), on
2pg/V=z+z̄. Accordingly

2L=f(z)+f 1
2pg
V
−z2=2b+

2pg
V

(50)

or L=b+pg/V. Using the fact that in this case ḃ=V, we need to solve the
differential equation

bḃ−Lḃ+pg (51)

The solution is b2−2Lb+2pgt=const. Choosing initial conditions such
that the interface is at zero when t=0 determines xint=b=L−`L2−2pgt.
For the velocity we find

V=ḃ=
pg

`L2−2pgt
(52)

This makes it clear that any genuine physical determination of the flow
(including the flux) requires boundary conditions at finite pressures, rather
than at pQ−..

3. ANALYTICITY AND CONFORMALITY AS A FUNCTION OF TIME

A. Solutions of the Equations of Motion for the Class g and

Asymptotic Stagnation Points

Considering the solution (27) we compute

ft=ḃ−C
N

k=1

ak żk

ez−zk−1
(53)

fŒ=1+C
N

k=1

ak

ez−zk−1
(54)

It is useful to consider these equations in various limits. Consider first
zQ±. on the real axis:

zQ. : ft=ḃ fŒ=1 (55)
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zQ−. : ft=ḃ+C
k
ak żk (56)

fŒ=1−C
k
ak (57)

Substituting in the equation of motion (25) we find

12−C
k
ak2 b+C

k
akzk=2(t−t0) (58)

with t0 a constant of integration. Next consider the asymptotic behavior
z ’ zk:

z ’ zk : ft ’−
ak żk

ez−zk−1
, fŒ ’

ak

ez−zk−1
(59)

Substituting in the equation of motion (25), after dividing by fŒ(z) fŒ(−z),
we find

−żkfŒ(−zk, t)+ft(−zk, t)=0 (60)

(Had we taken the ak time dependent the first sub- dominant asymptotic
term would have revealed that indeed the ak are constant.) Recognizing
that this equation reads df(−zk, t)/dt=0, we introduce the points zk in
physical space,

z̄k — f(−zk, t), żk=0 (61)

(Notice that by reflection symmetry zk, as the zk, come in complex
conjugate pairs.) With Re zk < 0 we see that −zk is in the interior of W,
and therefore zk is within the moving fluid. Thus zk are asymptotic
stagnation points of the flow as the singularities approach the interface.
This result was observed for the first time in ref. 16. More correctly, the
fluid stagnates ak ln 2 upstream from zk as Re zk Q0, at z=i Im z̄k. Finally
we rewrite Eq. (61) in the form

z̄k=b(t)−zk+C
l
al ln(1−ezl+zk) (62)

Dynamics of Finger Formation in Laplacian Growth 987



B. Necessary Conditions for Asymptotic Analyticity

The discussion of analyticity is largely independent of the explicit form
of solutions (27). Infinite channel asymptotics implies that

f=b+z+F(z, t) (63)

with the first two terms describing a uniformly translating fluid, and the
last term its decoration, (exponentially) vanishing at+., so that

F, FŒ, Ft Q0 as Re zQ+. (64)

Much of the discussion relies just on this. Moreover, to exhibit the moving
singularities, we write

F(z, t)=C Fk(z−zk(t)), Ft=−C żkF −k(z−zk(t)) (65)

with each Fk obeying (64), and by the analyticity of fŒ at−.,

F −k(−.) —−ak (66)

Granted this level of detail of f’s form, we have by the equations of
motion(25), with f ’ b+z as Re zQ+.,

ft(−.)+ḃfŒ(−.)=2 (67)

or

(1+fŒ(−.)) ḃ+Ft(−.)=2 (68)

or

(1+fŒ(−.)) ḃ+C ak żk=2 (69)

or

(1+fŒ(−.)) b+C akzk=2(t−t0) (70)

Let us write

1+fŒ(−.)=2−C ak — 2l (71)

Should all work well, with no impediment against all the zk approaching
the interface Re z=0 as tQ., then (70) implies

b ’
t
l

(72)
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It is now straightforward to show that the physical case requires

0 < l< 1 (73)

and hence by (71)

|fŒ(−.)| < 1 (74)

To see this, let us determine z(z0, t) for Re zQ+.. The differential equa-
tion for z, Eq. (20) reads here

1 ’ zt+ḃ (75)

Integrating

z ’ t−b+z0 ’ 11−
1
l2 t+z0 (76)

A given, far downstream, z0 lies on a line of constant pressure, imaged by f
at t=0 into a curve in z-space of constant pressure. Should z(z0, t) at later
times be further downstream, then by (63) and (64) this same fluid particle
lies on successively flatter pressure curves, so that a flattening profile prop-
agates upstream towards the interface. Of course, precisely the opposite
must occur, and so by (76)

1−
1
l
< 0, or 0 < l< 1 (77)

With z of (76), we now know the trajectories of far downstream particles:

f(z, t) ’ b+z ’ t+z0 (78)

just reflecting uniform unit flux of the fluid. On the other hand, with the
interface at Re z=0 and Re zk Q0−, F is bounded outside sufficiently small
disks about the zk’s, and so F(is, t) is bounded outside sufficiently small
intervals of s. Observing Eq. (53) and realizing that for long times żk Q0,
(and see a formal proof in the next section), we reach the conclusion that

f(is) ’ b ’
t
l

(79)

and so the interface is moving at velocity 1/l> 1. Conservation of flux
then imposes that the net width of the moving interface is just l times the
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full channel width, which to be physical (not to fail h’s conformality) must
lie between 0 and 1. It is thus clear that of all possible f’s, only those
obeying (74) meet physical boundary conditions. We next show that for
just these f’s analyticity is never lost in finite time.

C. Absence of Violations of Analyticity

We prove now that the solutions do not lose analyticity so long as (74)
is obeyed. f can fail to be analytic in the physical region in two possible
ways: either |b| diverges, leaving f defined nowhere, or the moving sin-
gularities cross Re z=0 into the physical regime. By presumption, b is
finite and Re zk < 0 at t=0, so that until such a disease occurs, Re zk are
bounded from above. We shall now demonstrate f’s analyticity for all
future times by exhausting the possibilities. First, consider that some of the
zk’s tend to -. at some finite or infinite time. Call the set of all such indices
k S̃, and its complement, S, then the set of singularities remaining bounded.
We show S̃ is empty without proviso. According to the equations of
motion for the singularities, for zk Q−., by (63) and (64)

z̄k=f(−zk) ’ b−zk, SbQ−. (80)

and produces a disease. But then

C
S̃

akzk ’ b C
S̃

ak+bdd (81)

and by (70) and (71)

2t ’ b 12−C
k
ak2+b CS̃

ak+bdd=b 12−C
S
ak2+bdd (82)

Should 2−;S a=0 this can (potentially) occur at finite time, else as tQ.,
2−;S a< 0 (bQ−.). That is, we require

C
S
a \ 2 (83)

Now, consider zk with any k ¥ S. From (61) and (63)

z̄k=b−zk+C
l

Fl(−zk−zl) ’ b+C
l ¥ S

Fl(−zk−zl) (84)
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or, with bQ−.

C
l ¥ S

Fl(−zk−zl)Q+., for each k ¥ S (85)

Equation (85) can be satisfied only if zk+zl Q0, ±2pi so that Fl becomes
singular, i.e. when all the Re zk Q0−, k ¥ S. Define

Sk — {l | z̄k+zl Q0, ±2pi} (86)

Clearly, k ¥ Sk, so that no Sk is empty, and the Sk’s are a partition of S.
Then, (85) is

C
l ¥ Sk̄

Fl(−zk−zl)Q+. (87)

Here we use a detail of Fl of (27): the logarithm tends to −., and so (87)
requires

Re C
l ¥ Sk̄

al < 0 (88)

where zk̄ — z̄k. Summing (88) over distinct Sk̄, we then have

C
S
a=Re C

S
a< 0 (89)

but this contradicts (83). Finally should S be empty, (all zk Q−.), (82) is
t ’ b, impossible since t > 0. We thus conclude that no zk can go to −.
for any t > 0. We are now left with the circumstance that all zk are
bounded. Should b be finite, then it is impossible for any zk to cross
Re z=0. This is contingent upon Fk imaging an arbitrarily small disc about
zk with arbitrarily large modulus, such as is the case for Fk of (27) with
Re ak ] 0. In this circumstance, and with b finite, |f(zk)|Q., |f(−z̄k)|=
|zk |=finite, and so zk cannot approach −z̄k, i.e. Re zk cannot approach 0.
Accordingly the discussion has contracted to Re zk Q0, |b|Q., for which
(82) reads

2t ’ b 12−C ak2=b(1+fŒ(−.)) (90)

Should fŒ(−.)=−1, then b can diverge at finite t, and generally a finite-
time loss of analyticity can occur. Otherwise we have just tQ+., and so,

fŒ(−.) <−1, bQ−. (91)
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or

fŒ(−.) >−1, bQ+. (92)

(Since |b|Q., every zk crosses Re z=0 ‘‘simultaneously’’ at t=+..)
Should case (91) hold the argument leading to (89) is appropriate, save that
S includes all the zk’s, and so ; ak < 0, i.e., fŒ(−.) > 1, a contradiction
to (91). Thus, only case (92) remains, in which case, the same argument
leading to (89) is now ; ak > 0, i.e. fŒ(−.) < 1, which with (92) is
|fŒ(−.)| < 1. To summarize what we have now demonstrated,

Observation 1. Unless fŒ(−.)=−1, then f remains analytic
throughout the physical region for all positive time. t can only continue to
+. if |fŒ(−.)| < 1.

The curious part of this result is that if |fŒ(−.)| > 1, then f remains
analytic, but the zk never get to cross Re z=0. This happens because then f
must lose conformality because ft has diverged (i.e. ḃ and żk’s become
infinite) although f is finite and analytic at such an instant. Should ft

diverge, then the equations of motion imply that fŒ=0 at some point on
the interface, i.e. that vQ. at some point of the physical fluid. What our
observation says is there must surely be finite-time singularities should
|fŒ(−.)| > 1. These singularities represent precisely an impending viola-
tion of boundary conditions. To see this, recall that our wall boundary
conditions are xs(p, s)=0 on s=0, p. By reflection symmetry, f has been
analytically continued to −p< s< p, rather than just the physical
0 < s < p. However such an f does not necessarily map s > 0 to just
y > 0. It will do so provided that f is conformal. Should f not be a
contraction at −., it is inevitable that, as the singularities approach the
interface, f will begin to map across half channels, and so, such an f fails
physical boundary conditions, and so is not an admissible solution. (To see
this, by Eq. (22), gŒ/g=fŒ/u, or g ’ ufŒ(−.) as uQ0—i.e. everywhere within
the radius of that ak(t) with smallest modulus. That is, with arg u=f,
arg w ’ fŒ(−.) f, and exceeds half channel width unless |fŒ(−.)| < 1.)
Consequently our observation reads that all admissible solutions under
physical channel boundary conditions are free from finite time failures of
analyticity, so that the conformal machinery we are employing is perfectly
applicable. The difficulty is, while |fŒ(−.)| > 1 always leads to finite time
failures in f’s conformality, the same disease can arise for admissible solu-
tions as well. This difficulty is profound, and we will expand upon it in the
next section.
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4. THE ASYMPTOTICS AND THE EMERGENCE OF ONE FINGER

We are ready now to establish a significant result: For tQ. the phy-
sical channel supports one finger. In the doubled channel, that is consid-
ered in all the literature, this of course means two fingers with a stagna-
tion point on the symmetry line. In particular, one finger in this geometry
is a physically incorrect result. Mathematically this is equivalent to the
following

Observation 2. For solutions that do not lose conformality for
tQ., and for which all ak are generic with Im ak ] 0, all zk Q0, ±ip.

Demonstration. Consider one of the terms in the sum (27), say
ak ln(1−ezk−z). Consider a circle of radius |e| around the singularity,
z=zk+e, where e — |e| e if, |e| is small, and −p< f< p. We investigate the
image of this small circle under f. For small |e|

f ’ b(t)+ak(ln |e|+if) mod±ip (93)

For a given |e| this image is a line of length 2p |ak | perpendicular to the
direction of ak (see Fig. 4). Consider next the punctured disk around the
singularity with radius |e|. This disk is imaged onto a series of slanted strips
oriented along the direction of ak with the above width as shown in Fig. 4.
As time progresses and b increases, this series moves to the right, entering
the physical domain. (Remember, this is a neighborhood of a singularity,
not a singularity!). Eventually, when |2 Re zk | < |e| the image of a very
small |e|-neighborhood of zk must include the stagnation point zk, the fixed
image of −z̄k, and must for all future time always include it. But as t
increases, the fixed-width strip containing zk is moving arbitrarily far to the
right. This would seem impossible. The only way to resolve this conundrum
is that

zk(t)Q0 or ±ip as tQ. (94)

When this happens ezkQ e z̄k and z̄k (mod 2pi if necessary) is also in the |e|-
neighborhood, and its term in (27) must be also included in (93). But,

a ln(1−ezk−z)+ā ln(1−e z̄k−z)Q2 Re a ln(1−ezk−z) (95)

and so the strips begin to rotate to the horizontal, and sufficiently so that
zk always remains within its strip. (94) is the only way to have Re zk Q0.
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Fig. 4. The mapping of a neighborhood of one of the singularities.

It should be stressed that even though an asymptotic finger solution is
emerging, its width is in no way selected. Moreover, over the duration of
an actual experiment, not all the singularities need be yet in asymptotic
proximity to Re z=0. That is, a subset of zk’s of the same order of magni-
tude will carry out migration toward 0 or ip, while other sets with extre-
mely large−Re z −k are still very far from asymptotic behavior.

To see this, consider as usual f of (27) built from those zk that are
sufficiently close to one another, and consider an exponentially small per-
turbation, built from z −k with Re z

−

k [−x° Re zk, x± 1:

f=b+z+C ak ln(1−ezk−z)+C a −k ln(1−ezŒk−z) (96)

Clearly, near the interface the last term is O(e−x). Writing the equations for
z −k,

z̄ −k=b−z
−

k+O(e
−x), QRe z̄ −k \ b+x (97)

Writing the b equation

11−C ak2 b+b+C akzk+1C a
−

kz
−

k−b C a −k2=2t−k (98)

Multiplying each equation of (97) by the a −k and summing, we see, with
k=; a −kz̄ −k,

11−C ak2 b+b+C akzk=2t+O(e−x) (99)

while the equations for each zk are

z̄k=b−zk+C al ln(1−ezk+zl)+O(e−x) (100)

We see then, by (99) and (100) that the near set of zk’s, for x large enough,
behaves exactly as a full system, and forms a finger of width l=1−; ak/2,
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and b=t/l. But then, by (97), for t [ lx/2, Re z −k<−x/2, and the z −k still
play an exponentially small role up to very long times during which a
l-finger is propagating. Ultimately for t ’ lx, the z −k become asymptotic,
and the finger metamorphoses into a lŒ=1−(; ak+; a −k)/2. So, from a
physical viewpoint, with ; ak+; a −k=1, the finger will become l=1/2
long after the experiment is over. But fŒ(−.)=1−; a−; aŒ=0 no
matter how large x may be. We see from this that fŒ(−.)=0 is insuffi-
cient to determine l=1/2. The width is determined just by the z −ks near
enough to Re z=0. Indeed, in (96) the ; a −k can be chosen arbitrarily with
no consequence during the experiment. Note that (96) is the transparent
implementation of the manipulations of ref. 9. It is clear that ref. 9 then has
no significance for selection of a 1/2 finger. (By choosing the ; aŒ
arbitrarily, the argument of ref. 9 would then show the ‘‘selection’’ of any l
whatever.) These comments pose a limitation on Observation 2 as well: The
larger the number of zk’s we choose, the more semi-stationary finger
regimes the initial conditions can be chosen to determine, so that in the
limit as this number diverges, no final asymptotics need exist.

5. VIOLATIONS OF CONFORMALITY: FINITE TIME SINGULARITIES

The discussion that follows critically assumes that f is in the manifold
(27). Should the velocity of a fluid point diverge, hŒQ. and corre-
spondingly fŒQ0, and so the map f, while remaining analytic, has locally
lost conformality. As we observed at the end of Section 3.c, should
|fŒ(−.)| > 1, for infinite channel flow, then there must occur a violation
of conformality. However, this circumstance is trivial, in that we realized
the failure occurred on the walls of the channel, and hence is not a solution
under our boundary conditions. Regrettably, this is far from the only way
in which such violations occur. However, it is not too hard to determine
when fŒ(z)=0 for some z within the physical fluid. Since for infinite
channel flow fŒ(.)=1, and so long as fŒ(z) ] 0 for Re z \ 0, then
|fŒ(z)| > 0 throughout the physical region. But then |fŒ|, since fŒ is analy-
tic, has its minimum value over a region on the boundary of that region,
which now evidently means the interface at Re z=0. It now follows that if
a failure of conformality occurs, it must first appear on the interface, and
so the condition for a finite-time singularity is

fŒ(is)=0 (101)

for some 0 < s < p (but not a boundary violation at 0 or p).
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To understand what happens, consider the behavior of the Saffman–
Taylor solutions, that is N=1 in (27). By (58)

b=
2t
2−a

−
ar0

2−a
(102)

where the one singularity, r0, is real as is its corresponding a. Then, by
(62), with z0=0,

0=
2(t−r0)
2−a

+a ln(1−e2r0) (103)

or

t=r0−
1
2 a(2−a) ln(1−e

2r0) (104)

(104) is soluble for r0 as long as tŒ(r0) — dt/dr0 ] 0. For r0 Q−.,
evidently t ’ r0 and t can increase from the far past. For tŒ=0, generally, t
will have then a maximum, and so ṙ0 Q., inducing a finite time sin-
gularity. But

tŒ=0=1+
a(2−a)
e−2r0−1

(105)

or

e−2r0=(1−a)2=[fŒ(−.)]2, e−r0=|fŒ(−.)| (106)

We now see that with r0 < 0, tŒ=0 is impossible for |fŒ(−.)| < 1, but
certain otherwise. That is, time ‘‘locks’’ for the inadmissible cases, and only
these cases. With ṙQ. (but f finite and analytic), ft Q., and we seek a z
on the interface where fŒ(z)=0. But

fŒ=0=1+
a

ez−r0−1
(107)

or

ez=(1−a) er0=
fŒ(−.)
|fŒ(−.)|

=±1 (108)

This is the general nature of the failure of conformality. At some time, t0,
time locks and various of ḃ and żk diverge, and hence ft diverges, although
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f can be perfectly finite. Simply, the system (58), (62) becomes locally non-
invertible for the zk’s.

We noticed in Section 2.F that Re fŒ(z)=l for our translating solu-
tions so that |fŒ(z)|=l> 0, and the interface is conformal, and any viola-
tion of conformality is the interior representation of sinks or sources. But
Re fŒ(is)=yŒ(s), or y=ls, and so x(s)=X(y), and the interface is a graph
of x on y. Generally, a graph with finite XŒ(y) (i.e. a differentiable graph)
won’t fail conformality.

For the class of solutions in Section 2.E with all ak > 0, it is easy to
see that yŒ(s) > l, and so y is monotone in s, and hence the solution is a
graph with |fŒ(z)| > l and so always conformal for 0 < l< 1. The only
possibility for a failure of conformality is with complex a’s and the inter-
face, a graph in the far past, about to become not a graph. (Indeed, the
generic rotation mechanism for the emergence of one asymptotic finger is
Im ak ] 0 for all k.) Real time singularities thus can arise when a ‘‘balloon’’
(not a graph) is about to form.

With ak=ak+ibk, Re fŒ(is) is modified with bk ] 0 by terms exponen-
tially small when the singularities are far from Re z=0, that is ’ eRe zk.
Thus conformality can fail only when singularities enter the rotation
mechanism of Section 4, which turns fingers into balloons. In particular,
this is definitely beyond the perturbative regime, and when the nonlineari-
ties have become very strong. The usual linear stability analysis, with tem-
poral exponents proportional to wavelength, simply means that fluctua-
tions very rapidly bring the solution into the strongly nonlinear regime.
Indeed, rather than infinitely wrinkled, distorted interfaces, if the rotation
mechanism can work, a smooth single balloon is the consequence of the
nonlinearities, provided class (27) obtains. We will have more to say about
this in ref. 11, as it transpires that the unstable behavior of the infinite
channel is physically significantly wrong. Any inspection of early interface
structure—say in Saffman–Taylor’s original paper—reveals that it is
balloons that are pervasive, and not graphs or fingers. Let us consider the
simplest balloon.

With the channel-doubling conjugacy of Section 2.F implicit, consider
the solutions with one zk:

f=b+z+a ln(1−ez0−z)+ā ln(1−e z̄0−z)

a=a+ib; a, b > 0; z0 —−t+ig, t> 0 (109)

The equation of motion z0=f(−z̄0) is

z0=b−z̄0+a ln(1−e2Re z0)+ā ln(1−e2z̄0)

z0=b+t+ig+a ln(1−e−2t)+ā ln(1−e−2t−2ig)
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Its imaginary part is

y0=g+a Arg(e2t−e−2ig)−
b
2
ln
|e2t−e−2ig|2

(e2t−1)2
(110)

or

y0=g+a tan−1 sin 2g
e2t−cos 2g

−
b
2
ln 11+

sin2 g
sinh2 t2 (111)

with the usual principal value of tan−1 correct. y0 is here half the distance
between the two ‘‘stagnation’’ points z0 and z̄0. The level curves of the RHS
of (111) with 0 [ y0 [ p are precisely, for each y0, the trajectory curve of a
z0, however it be parametrized by t. There are three types of trajectories
that connect to tQ. (with yQy0 as tQ.):

(i) tan−1(ab) < y0 [ p: the trajectory monotonically (in −t) increases
from y0 to p as tQ0.

(ii) a tan−1a
b−

b
2 ln(1+

a2

b2
) < y0 < tan−1a

b: the trajectory moves from
y0 to p as tQ0, initially to lower g values, and with a unique minimum.

(iii) 0 [ y0 < a tan−1a
b−b ln(1−

a2

b2
): the trajectory monotonically

flows from y0 to 0 as tQ..

Trajectories of types (i) and (ii) rotate to p, and the ‘‘walls’’ at ±p are
closed to flow, with a balloon symmetric about y=0 moving down the
channel. Type (iii) has z0 and z̄0 both rotate to g=0, blocking flow along
y=0, with fluid advancing along the ±p walls. By Section 2.F, (i) and (ii)
have blocked flow at y=0, p with the balloon symmetric about y=p/2,
while (iii) has flow blocked along p/2, since the upper half poles are both
rotating together to p/2. This is unphysical and non-generic: the rotation
mechanism of Section 4 can only lead to this under extra, nonphysical,
symmetry, which of course is exactly what the method of Section 2F
creates. With two generic poles, case (iii) would not have occurred. Regret-
tably, this generic version is not analytically tractable.

However, while it turns out that type (iii) never encounters finite time
singularities, not all the ‘‘good’’ types, (i) and (ii) trajectories are free of
disease. That is, there is, for each a and b, a minimum gap, 2ymin

0

between the stagnation points that allows the interface to squeeze down
through the gap, and then re-merge, blooming out into a balloon. For any
smaller y0, the interface is squeezed into a cusp, unable to pass through the
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gap without penalty of a singularity. This attempt to squeeze through and
balloon out is the generic disease that s=0 theory is plagued by: there are
a fraction of initial conditions that fail. In fact, this is precisely where
surface tension needs to be enlisted. With surface tension the stagnation
points are no longer constants of the motion, and indeed will move apart
just enough to allow the incipient balloon to pass through the gap. It is
noteworthy that in experimental studies such a phenomenon always
appears at the initiation of flow (cf. refs. 1, 4).

6. FINITENESS

So far we have considered a channel filled with fluid infinitely far
downstream. This is of course unphysical. Any experimental apparatus
introduces by necessity some additional boundary condition on the physi-
cal fluid far downstream, requiring mathematical boundary conditions to
model this termination.

We recall that the possibility of adding a sink located at some finite
position was discussed in Section 2F. We can think of other ways to have
the fluid itself finite. First, consider the idealized Hele–Shaw cell. At a long
distance downstream we erect a baffle crosswise to the channel—say at
x=0. Behind the baffle we have a pump controlled to maintain an exactly
constant unit flux of fluid through the baffle. With a uniform enough
baffle, we have v(0, y, t)3 x̂ as an approximate boundary condition. Thus
vy=0=−“yp on x=0 or p(0, y, t) —−pg(t), pg the positive gauge pressure
on the finite fluid from the interface at p=0 to the baffle. That is

Re f=0 at Re z=
pg(t)
V

— tg(t) (112)

But with f reflection symmetric, we have

f(z, t)+f(z̄, t)=0 at z+z̄=2tg(t) (113)

Assuming the fluid is analytic over any region containing Re z=tg in its
interior, we then have by analytic continuation

f(z)+f(2tg−z) — 0 (114)

for all z in the region of analyticity. This exposes the real power of reflec-
tion symmetry: not only is there a relation of the upper physical channel to
the lower unphysical one, but under finite boundary conditions from very
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high pressures to very low ones. In this case there is no full exponential
decoupling of efflux from interface motion. This is precisely the ‘‘enforced
symmetry’’ between z and−z mused about in the sink solution of (45) with
a=1 in Section 2F with its upstream pointing 1/2 Saffman–Taylor finger.
We will explore this momentarily, after discussing the variant to Hele–
Shaw, and a related other pair of terminations.

An obvious variant to fixed velocity on the cross-channel line at x=0
is to simply open (cut off the end of) the channel, so that p(0, y, t) —
pa=const=atmospheric pressure. We then have

Re f=0 at Re z=−
pa
V(t)

=+
pg
V(t)

— tg(t) > 0 (115)

Just as before, we now have

f(z)+f(2tg−z)=0 (116)

so that both variants entail the identical calculations, save for the driving
fluxes:

2=fŒ(z) ft(−z)+fŒ(−z) ft(z) (117)

in the Hele–Shaw case, whereas

2Q2V(t)=
2pg
tg(t)

(118)

in the constant pressure termination, ultimately determining the non-steady
V(t) in this case, as we saw in the most elementary versions of (116) with
f=b+z in (49)– (52) of 2F.

The other pair of variants replace the cross-channel line at x=0 with a
small circular aperture of radius a all along which either vr —−1/2a so
that V=1 by (7), or again p=pa and Re z=tg(t). These circular aperture
problems are mathematically related by exponentiation to the cross-
channel line versions, and technically much harder to discuss with closed
solutions. However with p=pa, on the circular aperture, there must be a
singularity in the interior of the aperture to sink the full-flux that must
enter it if we seal off the channel arbitrarily far downstream, so that all
fluid must efflux through the aperture, and in this case, flow stagnates far
to the right, and so whatever we do far enough to the right will indeed be
exponentially suppressed. If the singularity is just a simple pole, then it is a
sink, generally moving within the interior of the aperture. By circle sym-
metry, the analogue for (115) is the fluid gathering into a moving sink to the
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right of x=0, rather than becoming flat at infinity. For example, fluid with
surface tension after emerging from the shaping channel would form a vena
contracta, and so, reminiscent of a moving sink. This was the physical
motivation of our consideration of (45) with a=1 in Section 2.F.

Let now attempt to solve for an f obeying (114) or (116). Setting
zQ z+tg, (116) is

f(tg+z)=−f(tg−z) (119)

It is easy to check by direct substitution that

f(z)=A(z−tg)−A(−z+tg) (120)

with A arbitrary. Consider

A(z)=
z

2
+C ak ln(1−ezk−z) (121)

and so,

f(z)=z−tg(t)+C ak ln(1−ezk+tg−z)

−C ak ln(1−ezk−tg+z) (122)

Equation (122) is the entire class (27) of solutions meeting our boundary
requirements (b=−tg).

As a first example, consider just one a and choose z0=−tg+ip. (122)
then is

f(z)=z−tg+a ln(1+e−z)−a ln(1+e−2tg+z) (123)

For tg ° 1 this solution is a single Saffman–Taylor finger with an arbi-
trary width. We insist however that there be no flux going off to infinity, in
fact no flux for Re z> 2tg for a fully pinched vena contracta. (This would
have been automatic in the case of the circular aperture.) To sink all flux
requires a=1 (cf. the discussion after Eq. (45)), and so

f(z)=z−tg+ln(1+e−z)−ln(1+e−2tg+z) (124)

which for tg ± 1 is precisely a l=1/2 Saffman– Taylor finger (44). This is
our first piece of evidence that l=1/2 is connected to finiteness.

But, all is not well. Notice that

fŒ=
1

1+e−z
−

1
1+e2tg−z

QfŒ(−.)=0 (125)
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and

fŒ(+.)=1−1=0 (126)

But then, unless ṫg is always infinite, (117) and (118) are only compatible
with V(t) — 0, and so these solutions are purely static and not what we
seek.

Consider then more ak. By Eq. (116) if zk is a singularity of f, so too
is 2tg−zk. But then, each asymptotic stagnation point condition (61)
becomes two conditions:

f(−zk)=z̄k, and f(zk−2tg)=z̄
−

k (127)

Together with the zQ. equation for b, there are about twice as many
equations as variables unless tg=0, in which case pg=0, and there is no
motion. We have already seen that one real z has no flux, and it is reason-
able clear that all other cases entailing too many equations are inconsis-
tently over-determined. By (119) fŒ(−.)=0SfŒ(.)=0, and so there can
never be flux with l=1/2. The above comments of over-determination hold
for all l. That is, our first four schemes of finite termination allow no
motion for f’s of class (27) with any finite number of singularities.

On physical grounds, the fluid emerging into atmosphere becomes
3-dimensional, and the derivation of Darcy’s law breaks down. Equation
(115) must be too stringent. Equivalently, it is not feasible to have a baffle
with v3 x̂ all along its length. To the contrary, we easily imagine fluid
racing vastly faster through some holes in the baffle rather than others; this
choice can readily vary in time under minor perturbations of the pump
action, etc. So, there are hosts of singularities very close to the line
Re z=0, and (114) fails for failure of analytic continuation. (This is most
probably an over-exaggeration: it seems not necessary that Re z=0 is truly
a natural boundary.) On reflection, these comments imply that the physical
experiments that have been performed contain dynamically determined
analyticities, and so are incompletely posed boundary data configurations.

Let us consider a fifth scheme of finiteness, of a totally different
character from the previous four. Consider an infinitely long channel, only
partly filled with a finite body of fluid, with p — 0 on the left driven face,
and p — p1=−pg, pg > 0 on the other, right, free interface. The equation
of motion for f on the left face, are as usual (25) with V̇ surely non-zero:

2V(t)=fŒ(z) ft(−z)+fŒ(−z) ft(z) (128)
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The right interface lies at

Re z=
pg
V(t)

=tg(t) (129)

and so, with zQ z(z0, t), z0 Lagrangian coordinates, with free interface
transported to itself,

Re zt=ṫg (130)

and so by (20)

V(t)=|fŒ|2 ṫg+Re f̄Œft on z+z̄=2tg(t) (131)

By reflection symmetry, we then obtain a second field equation in con-
sequence of the second free interface:

2V(t)=2ṫgfŒ(z) fŒ(2tg−z)+fŒ(z) ft(2tg−z)

+fŒ(2tg−z) ft(z) (132)

The fluid must now simultaneously obey both pde’s, (128) and (132). It is
unquestionably true that this system must have solutions of a physical
character, as otherwise the entire 2-d theory should have to be discarded:
This fifth version of finiteness is entirely well-posed within a conformal 2-d
context. Singularity structure, of course, is more subtle than our consid-
erations so far, but nevertheless if the right interface needs to be a natural
boundary (i.e. no further analytic continuation possible), it is surely the
case that so too must be the left, because the physics at both are identical.

Let us now consider a class (27) solution. (Imagine the fluid initially in
such a state of perfect repose that its f can be naturally analytically con-
tinued to +..) In this case we can take the limit of (128) and (132) as
Re zQ.. We then deduce that

ṫgfŒ(+.) fŒ(−.)=0 (133)

But fŒ(+.)=1 (class (27)) and V̇ ] 0Q ṫg ] 0, and so we have class (27)
with

fŒ(+.)=1, fŒ(−.)=0 (134)

and so only l=1/2 solutions.
This, then, is an indication that pattern selection follows from finite-

ness. This indication will be developed into a theory in ref. 11.
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7. DISCUSSION

We have returned to the Saffman–Taylor problem with the viewpoint
of it as a dynamical system in order to better understand the evolution of
its solutions. In doing so we have carefully re-thought the relevant bound-
ary geometry and conditions and realized that reflection symmetry rather
than periodicity is to be imposed. This led to two significant consequences.

First, reflection symmetry and analytic continuation naturally promoted
the equations of motion from a relation pertaining purely to the inter-
face, to one of a field character throughout the fluid. In consequence, we
need never consider the usual Hilbert transform boundary methods, instead
directly, and largely algebraically, obtaining solutions and their dynamics.

Secondly, the fluid equations naturally link f(z) and f(−z), so that
very far downstream details of termination potentially couple to the very
far upstream (above physical fluid) details, such as the singularities deter-
mining the flow. This counter-intuitive failure of termination details to
exponentially decouple from the behavior of the interface propelled us to
contemplate that finiteness in this problem is apt to be a deeply significant
‘‘singular’’ perturbation upon the ‘‘physics’’ of the infinite channel
problem. In consequence, we formulated the theory from the beginning to
include the possibility of variable flux, a necessity of finite configurations.

Employing our reflection-symmetric field equations, we readily pro-
duced a variety of elementary solutions and then the pole- dynamics family
(27). In particular we determined the general form of all translation-
invariant solutions, and the simplest pole-type solutions more complicated
than the original Saffman–Taylor class. These are characterized by a down-
stream sink, which when fully sinking all flux, produces an upstream point-
ing 1/2 finger surrounding the zone of efflux. Considering how the nature
of this finger is contingent upon final termination (a full sink at finite dis-
tance), and considering the ± z symmetry of the equations of motion, it is
impossible not to wonder that we might be touching upon the origin of
pattern selection. In this context the reader should not be troubled by the
circumstance that the sink is now within the body of physical fluid. He
should not (or should) because this is identical to the situation in the usual
infinite channel flow, when the full sink instead of appearing at finite Re zs
is at Re zs=+., still fully within physical fluid. (One might think of a
Möbius transformation rotating the point at infinity to a proximate point.)
This, in fact, should trouble the reader, because it means that efflux in the
usual case (Re zs=+.) has not been physically treated: The volume of
fluid is conserved only because .−1=.. As we shall see in ref. 11, a full
treatment of all real fluid has significant physical consequences. In partic-
ular, it transpires that each unstable perturbation of a Saffman–Taylor
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finger requires exponentially growing power from the energetic sources driv-
ing the flow, so that under pump control, the exponentially growingmodes are
sharply suppressed, leaving behind, at best, resummations such as class (27).

We proceeded to analyze the evolution of an arbitrary flow, although
largely within the context of class (27), to better understand how well-for-
mulated the theory is, and some general boundary violating circumstances
of finite-time singularities—namely those that have been put in evidence in
the prior literature. We later went on to exhibit the general circumstance of
a finite-time singularity within class (27), which is the situation of an inci-
pient balloon attempting to negotiate passage through a pinching pair of
stagnation points. With arbitrarily small surface tension, the class (27) flow
is unaltered until the tip of the penetrating fluid is approaching a cusp with
diverging curvature. At this point the singular perturbation renders the
stagnation points no longer constants of the motion. However, as soon as
the pair has separated far enough to allow the balloon to form, the curva-
ture is quite finite, and class (27) is again correct, save that the stagnation
points are just far enough apart to allow the minimum waisted balloon to
pass: Had we chosen initial data to have been these new locations of stag-
nation points, the s=0 theory would have fully sufficed, and produced the
physical solution. Following the last paragraph of Section 5, taking the
simplest class (27) solution with one pair of complex zk’s with Re ak=1/2,
one can find that Im ak with the narrowest waist, and observe the strong
similarity between the asymptotic balloon and the best developed experi-
mental one of ref. 1.

We next observed, purely within class (27) however, that with sin-
gularities coming in clusters, each cluster well-separated in Re z from
another, that the solution has asymptotic regimes, with singularities far to
the left playing an exponentially insignificant role upon the shape of the
interface, while all the others are very close to Re z=0, and as we demon-
strated, having migrated to Im z=0 or p. That is, until another cluster of
singularities at the left arrives close to Re z=0, at which time it joins into
the asymptotics of those already there, the interface evolves as a single
Saffman–Taylor finger. As another cluster arrives, that finger metamor-
phoses into another of a new width if ;Œ ak of those arriving differs from
zero. That is, class (27) has the asymptotics of always a single finger, but of
generally metamorphosing width. To establish l=1/2 on these grounds
requires a reason for ;Œ ak=1 for just those singularities near Re z=0
during the period of time of the physical experiment: with ; ak=1 for all
singularities, including those arbitrarily far to the left, demonstrates
nothing about physical pattern selection. What has fundamentally charac-
terized Section 3–5 is our focus upon temporal evolutions, accomplished
via class (27), by considering this flow as a dynamical system.
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Finally, we pick up on the ± z symmetry, a consequence of dynamics
imposed upon Re z=0 of a reflection symmetric system. With any bound-
ary fixing on another curve, say Re z=tg(t), a sharp relation of +z to −z
must follow, such as with fixed pressure along a downstream line, yielding
(114). This makes it clear that arbitrarily far downstream terminations
(tg ± 1) somehow become entangled with Re z°−1, the domain of sin-
gularities that determine the shape of the interface. Although (114) allows
of no class (27)+ solutions, ‘‘+’’ meaning including singularities far to the
right as well as those to the left of Re z=0, this does not mean that there
are no solutions: this is largely the insufficiency of finite order class (27),
even when extended to include higher order singular terms. (We shall see
this in ref. 11.) However, it is clear on physical grounds that (114) is too
stringent a symmetry, and is to be replaced by myriad singularities in the
flow’s analytic continuation beyond termination. This is a serious modifi-
cation of the problem, since these singularities are dynamical and of a
priori unknown character and locations, instead determined by all the
mechanical vagaries of the innards of a pump and so forth, and so no
longer a physically sensibly posed problem. Instead, the physical problem is
one of boundary geometry over just the experimentally observed body of
fluid, and hence is one of incompletely posed geometry and data. This
entails solutions no longer unique, requesting a physical mechanism to
select among branches etc.

Accordingly, within the machinery and formulation at hand, just one
choice lies open, which is to consider the purely 2-D conformally well-
posed problem with two free interfaces. The full treatment of this purely
non-autonomous, non-periodic problem is the subject of ref. 11. We reflec-
ted some of its introductory matter into the last section of this paper to
complete the flow of our considerations. It is worth mentioning that there
is a class (27) solution with precisely one real zk (and ak=1), and no others
whatsoever within class (27).
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